We often use guess-and-check when factoring trinomials, which is not a problem with small numbers or big prime numbers (there's only one pair of factors that equal $73 \rightarrow 1 \& 73$!). Sometimes we run into large numbers or numbers with lots of pairs of factors (72 can be made by $1 \& 72,2 \& 36,3 \& 24,6$ \& 12, and 8 \& 9).

We can get frustrated with all the incorrect guesses, worn-out erasers, and papers with holes erased through them. Is there another way?

Example 1

Factor $48 x^{2}+128 x+45$
Step 1- Multiply the $1^{\text {st }}$ term and $3^{\text {rd }}$ term and write down the result. Be sure to pay attention to whether the result is positive or negative.

Step 2- Find two factors that will multiply to equal our new coefficient. These two factors must add to equal the $2^{\text {nd }}$ term coefficient.

We need two factors with a product of $+2160 x^{2}$ that also have a sum of $+128 x$. We will do some guessing here as well, but we can guess with our brains (or calculators) and save a lot of erasing.

We already know two factors that multiply to equal $+2160 x^{2} \rightarrow+48 x \&+45 x$. But these factors have a sum of $+93 x$, which isn't what we want. What are some more combinations (that you can try in a calculator, if necessary) of two numbers that multiply to equal $+2160 x^{2}$? Do you notice that it ends in 0 and all the digits add up to 9 ?

$$
\begin{gathered}
(+48 x) \cdot(+45 x)=+2160 x^{2} \quad \text { and } \quad(+48 x)+(+45 x)=+93 x \\
(+10 x) \cdot(+216 x)=+2160 x^{2} \quad \text { and } \quad(+10 x)+(+216 x)=+226 x \\
(+20 x) \cdot(+108 x)=+2160 x^{2} \quad \text { and } \quad(+20 x)+(+108 x)=+128 x
\end{gathered}
$$

We found them! $(+20 x) \&(+108 x)$ are what we need!

Step 3- Write the two factors we found in Step 2 in the middle. On the outside, bring down the original $1^{\text {st }} \& 3^{\text {rd }}$ terms.

Step 4- Factor by grouping to get the final answer.

$$
\begin{gathered}
48 x^{2}+20 x+108 x+45 \\
\left(48 x^{2}+20 x\right)+(108 x+45) \\
4 x(12 x+5)+9(12 x+5) \\
(4 x+9)(12 x+5)
\end{gathered}
$$

Step 5 (Optional)- Use FOIL to check your answer.

$$
\begin{gathered}
(4 x+9)(12 x+5)=48 x^{2}+20 x+108 x+45=48 x^{2}+128 x+45 \\
(\mathbf{4 x + 9})(\mathbf{1 2 x}+\mathbf{5})
\end{gathered}
$$

