1. If y varies inversely as x, and $y = 3$ when $x = 6$, find x when $y = 18$.

 $x = 1$

2. If z is inversely proportional to r, and $z = 32$ when $r = 1.5$, find r when $z = 8$.

 $r = 6$

3. If w is inversely proportional to the square of v, and $w = 3$ when $v = 6$, find w when $v = 3$.

 $w = 12$

4. If p varies inversely as the square root of q, and $p = 12$ when $q = 36$, find p when $q = 16$.

 $p = 18$

5. If z is jointly proportional to x and y, and $z = 18$ when $x = 0.4$ and $y = 3$, find z when $x = 1.2$ and $y = 2$.

 $z = 36$

6. If w is jointly proportional to u and v, and $w = 24$ when $u = 0.8$ and $v = 5$, for what value of u will $w = 18$ when $v = 2$?

 $u = 1.5$

7. If a varies directly as b and inversely as c, and $a = 10$ when $b = 5$ and $c = 3$, for what value of c will $a = 3$ when $b = 4$?

 $c = 8$

8. Suppose that r varies directly as p and inversely as q^2, and that $r = 27$ when $p = 3$ and $q = 2$. Find r when $p = 2$ and $q = 3$.

 $r = 8$

9. Suppose that z varies jointly as u and v and inversely as w, and that $z = 0.8$ when $u = 8$, $v = 6$, and $w = 5$. Find z when $u = 3$, $v = 10$, and $w = 5$.

 $z = 0.5$

10. Suppose that w varies directly as z^2 and inversely as xy, and that $w = 10$ when $x = 15$, $y = 2$, and $z = 5$. Find z when $w = 2$, $x = 8$, and $y = 27$.

 $z = 6$