Let's see how we can solve quadratic equations $(ax^2 + bx + c = 0)$ by **completing the square**.

Example 1 Solve $x^2 + 6x - 9 = 0$ by completing the square.

Step 1- Make the coefficient in front of $x^2 = 1$ (for ax^2 , a = 1) The coefficient of x^2 already is 1 in our problem, so we can skip this step.

Step 2- Rearrange the equation so $x^2 + bx$ is alone on the left side. Leave some room for a number to be added during Step 3.

$$x^{2} + 6x - 9 = 0$$

$$x^{2} + 6x = 9$$

$$x^{2} + 6x + \blacksquare = 9 + \blacksquare$$

Step 3- Complete the square for the left side, and be sure to add this new number to BOTH SIDES to keep the equation balanced.

The left side is
$$x^2 + 6x + \blacksquare$$

The coefficient of the middle term is 6 \longrightarrow 6 ÷ 2 = 3 \longrightarrow (3)² = 9

We will add 9 to BOTH SIDES of the equation, and this will allow us to complete the square on the left side.

 $x^{2} + 6x + = 9 + =$ $x^{2} + 6x + 9 = 9 + 9$ Make a binomial square $(x + 3)^{2} = 18$

Step 4- Take the square root of BOTH SIDES of the equation to solve for the variable.

$$\sqrt{(x+3)^2} = \sqrt{18}$$
$$x+3 = \pm 3\sqrt{2}$$
$$x = -3 \pm 3\sqrt{2}$$

Example 2

Solve $5x^2 - 10x + 30 = 0$ by completing the square.

Step 1- Make the coefficient in front of $x^2 = 1$ (for ax^2 , a = 1)

The coefficient of x^2 is 5 in our problem, so we will factor out 5 from each term.

 $5x^{2} - 10x + 30 = 0$ $5(x^{2} - 2x + 6) = 0$ $x^{2} - 2x + 6 = 0$ Now divide by 5

Step 2- Rearrange the equation so $x^2 + bx$ is alone on the left side. Leave some room for a number to be added during Step 3.

 $x^{2} - 2x + 6 = 0$ $x^{2} - 2x = -6$ $x^{2} - 2x + = -6 + =$

Step 3- Complete the square for the left side, and be sure to add this new number to BOTH SIDES to keep the equation balanced.

The left side is
$$x^2 - 2x + \blacksquare$$

The coefficient of the middle term is $-2 \rightarrow -2 \div 2 = -1 \rightarrow (-1)^2 = 1$

We will add 1 to BOTH SIDES of the equation, and this will allow us to complete the square on the left side.

 $x^{2} + 6x + = -6 + \square$ $x^{2} - 2x + 1 = -6 + 1$ Make a binomial square $(x - 1)^{2} = -5$

Step 4- Take the square root of BOTH SIDES of the equation to solve for the variable.

$$\sqrt{(x-1)^2} = \sqrt{-5}$$
$$x-1 = \pm i\sqrt{5}$$
$$x = 1 \pm i\sqrt{5}$$