DIRECTIONS: Find a formula for the nth term of each geometric sequence.

3.
$$1, \sqrt{2}, 2, 2\sqrt{2}, ...$$

6.
$$-1, 0.1, -0.01, 0.001, \dots$$

<u>DIRECTIONS</u>: Find the specified term of each geometric sequence.

7. 2, 6, 18, 54, ...;
$$a_{10}$$

8. 5, 10, 20, 40, ...;
$$a_{12}$$

9. 320, 80, 20, 5, ...;
$$a_8$$

10. 1,
$$-3$$
, 9, -27 , ...; a_8

11.
$$-10, 50, -250, 1250, ...; a_9$$

12. 40,
$$-20$$
, 10 , -5 , ...; a_{11}

<u>DIRECTIONS</u>: Find the geometric mean between each pair of numbers.

14.
$$\frac{1}{12}$$
, $\frac{1}{18}$

15.
$$\sqrt{3}$$
, $3\sqrt{3}$

15.
$$\sqrt{3}$$
, $3\sqrt{3}$ **16.** -18 , -36

DIRECTIONS: Write each series in expanded form and find the sum.

17.
$$\sum_{n=1}^{6} 2^n$$

18.
$$\sum_{m=0}^{4} 3^m$$

19.
$$\sum_{j=0}^{5} \frac{(-1)^j}{j+1}$$

20.
$$\sum_{k=0}^{3} 4^{-k}$$

21.
$$\sum_{n=1}^{4} (-n)^{n+1}$$

<u>DIRECTIONS</u>: Find the sum of the first *n* terms of each geometric series.

22.
$$1 + 4 + 16 + 64 + \cdots$$
; $n = 14$

23.
$$1 + 9 + 81 + 729 + \cdots$$
; $n = 10$

24.
$$7 + (-21) + 63 + (-189) + \cdots$$
; $n = 18$

25.
$$2 + 10 + 50 + 250 + \cdots$$
; $n = 9$